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C.I) Introduction 

In part A, all available literature data are displayed in tables, and plotted 

in figure 1. The slopes of the lines through the data in figure 1 suggest that 

there is a change in the rate controlling mechanism from interface control 

(linear with time, slope equals one in figure 1) to diffusion control 

(proportional to square root of time, slope one half in figure 1) as the gold 

consumption increases. Here we develop a model for the diffusion-controlled 

reaction using data from planar and circular geometry. We determine the 

regimes in time and temperature where the reaction is diffusion controlled and 

where it is interface controlled, and then derive the set of equations for a 

comprehensive time and temperature dependent model that describes the reaction 

for all temperatures and time.   

 

 

 

C.II) Using all available data to develop a diffusion-controlled reaction 
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model. 

 The change in mechanism from interface control to diffusion control 

suggested in figure 1 appears to be temperature dependent. If one extends the 

line through Yost et al.’s data at 150°C until it intersects the line through 

the 151°C data of Powell & Braun, one would estimate that this change in rate 

mechanism occurs at that temperature when the gold consumption is about 50µm. 

Braun & Rhinehammer’s data in figure 1 suggest that at lower temperatures this 

change in reaction rate control mechanism may occur at gold consumption below 

10µm. There are, however, only very few data available that clearly show 

diffusion control. That makes it difficult to develop a model that can be 

trusted. To demonstrate the change in the rate controlling mechanism we plot 

in figure 28 all data of Yost et al. [9], generated in planar geometry. 

 
Figure 28. Gold consumption versus time in planar geometry, using data of Yost 
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et al. [9]. The gold consumption is calculated by converting the AuIn2 

thickness observed by Yost et al. to the equivalent of gold. Yost et al.’s “d” 

data have an “average” zero time intercept of 2.8µm. That “average” intercept 

is subtracted from the data in this graph, which leads to the deviation from 

linear behavior for some of the y-axis data below .2µm. The data of most 

interest here are the two sets of data at 150°C. There are two points of 

interest: 1) the data are very reproducible: the filled red triangles and the 

empty purple triangles coincide, 2) the data above about 20µm show a 

distinctly different slope (i.e. ½, implying that the reaction is proportional 

to √time, diffusion controlled, in that regime.) The data of most interest 

here are the two sets of data at 150°C. (The second set of data at 150°C, 

shown in figure 14 of Yost et al. are NOT shown in figure 1). There are two 

points of interest: 1) the data are very reproducible: the filled red 

triangles (set 1) and the empty purple triangles (set 2) coincide, 2) the data 

above 10µm show a distinctly different slope (i.e. ½, implying that the 

reaction in that regime is proportional to square root of time, diffusion 

controlled.) The linear and non-linear slopes intersect at approximately 20 

µm. There is another set of data in planar geometry by Powell and Braun [8]. 

In figure 29 the data of Powell and Braun are plotted vs. square root of time, 

together with the 150°C data of Yost et al. The equations fitted to the data 

are also shown. In order to develop a temperature dependent model for the 

diffusion controlled reaction the coefficients multiplying “square root of 

time” should be known over a wide range of temperatures. Unfortunately only 

one additional set of data for gold consumption above 20µm exists, measured at 

LLNL for gold wires of 101.6µm diameter at 79.9 and at 90.9 °C, shown in 

figure 30 as a function of square root of time. Only one single data point 

exists at 79.9°C. 



 53 

 
Figure 29. Gold consumption versus square root of time in planar geometry. 

Data at 150°C of Yost et al. [9] for gold consumption greater than about 10µm 

plotted versus square root of exposure time, together with the data of Powell 

and Braun [8] at 142 and 151°C.  Both data sets are well fitted with equations 

proportional to square root of time, indicating that in this regime the 

reaction is diffusion controlled. The rates of reaction per square root of 

month are 40.975 at 142°C and 77.257 at 151°C respectively for Powell and 

Braun’s data, and 63.032 for Yost et al.’ data. Also shown is the gold 

consumption predicted by the linear reaction model. It intersects the data at 

142°C at about 22 µm, and the data at 150°C and 151°C at 34 and 55 µm 

respectively. 
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Figure 30. Gold consumption measured at Lawrence Livermore 

National Laboratory on wires of 101.6 µm diameters plotted in 

a double logarithmic graph as a function of square root of 

time. Only one data point exist for 79.9 °C, and only three 

data points at 90.9°C. Therefore no fit “linear with √time” 

is done, but rather lines “linear with √time” are drawn in 

this log-log plot to demonstrate that the measured values are 

consistent with diffusion control, and the “slopes” are 

calculated at each data point. 

 

The coefficients multiplying square root of time are calculated or derived in 

figure 30 (see details there), and used in figure 31 in an Arrhenius plot to 

derive the model equation describing the diffusion-controlled reaction. 
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Figure 31. The coefficient multiplying “√time” derived from 

figures 29 and 30 plotted vs. reciprocal temperature in degree 

Kelvin. 
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exponential factor. 

 As indicated in figure 31, this model equation for the diffusion-controlled 

reaction is generated from only a few data points, and hence subject to 

revision by additional data.  

C III.) Defining the temperature and time regimes where the interface and the 

diffusion controlled reaction models apply.  

Figure 1 already suggests, that the change from interface control to diffusion 

control is temperature dependent. Figure 29 demonstrates – for temperatures 

around 150°C - at which time and gold consumption predicted by the linear 

reaction model intersects the observed square root of time dependent gold 

consumption. The linear model intersects the data at 142°C at about 22 µm, and 

the data at 150°C and 151°C at 34 and 55 µm respectively. 

 
Figure 32. Gold consumption vs. time calculated using both the 

linear and “√of time” model and showing the intercepts of the 

linear reaction model and the “square root of time dependent” 

model at 20, 35, 60 and 150°C. 
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. Figure 32 shows the intercepts of the linear reaction model and 

the “square root of time dependent” model at 20, 35, 60 and 

150°C. The double line in the graph connects the intersect 

points. In the region above that line the reaction is diffusion 

controlled, below that line it is interface controlled. The 

“square root of time dependent” model derived from the data at 

elevated temperature predicts that at 35 and 20°C the reaction 

may become diffusion controlled for gold consumption less that 

10µm. There are no data (see figure 1) that would contradict 

that prediction. Braun and Rhinehammer’s data in figure 1 at 70° 

indicate a change in reaction mechanism occurs for gold 

consumption less than 10µm, just as is seen in this figure at 

60°C. 

 The “square root of time dependent” model derived from the data 

at elevated temperature (see figure 31) predicts that at 35 and 

20°C the reaction may become diffusion controlled for gold 

consumption less that 10µm. There are no data (see figure 1) 

that would contradict that prediction. Moreover, Braun and 

Rhinehammer’s data in figure 1 at 70° indicate that a change in 

reaction mechanism may occur for gold consumption less than 

10µm, just as is seen in figure 32 at 60°C. A general equation 

for deciding whether the reaction is interface controlled or 

diffusion controlled can be derived by determining the point in 

temperature and time when the amount of gold converted is the 

same in both equations, as shown below: 

 

! 

"Gold = ALineare
#BLinear

T * time(month) =

"Gold = ASquareRoote
#BSquareRoot

T * time(month)
   



 58 

 

 

 

These equations define a comprehensive time and temperature dependent model 

for all times and temperatures.  
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IV.) Comparison of LLNL derived gold-indium reaction kinetics 

with reaction kinetics derived by Millares1(Millares 1993) 

(based on the model by Dybkov(Dybkov 1986)2). 

 Said model accounts for both interfacial reaction and diffusion 

controlled reaction in planar geometry, and states that at any 

time t, the following equation applies:

t =  e /K1 + e
2 /Kp,    e = t *Kp + (Kp / 2K1)2  -  (Kp / 2K1),     Millares,  equ. [1] 

where e is the reaction layer thickness, and Kp and K1 are the 

parabolic growth rate constants for diffusion-controlled growth 

and linear growth rate constants for inter-facially controlled 

growth, respectively. This model makes the assumption that even 

at a reaction time when the rate of arrival of reactants to the 

surface is controlled and limited by the rate of diffusion 

through the reaction product layer of thickness “e”, the time 

needed to form the reaction product at the surface (here gold 

with the reactant indium) is still important in the rate of 

growth of the reaction product layer. That is debatable or 

questionable. Let us assume that the diffusion-controlled rate 

of arrival of indium atoms at the gold surface is 2/cm2s, and 

that another .5 seconds is needed to convert these indium atoms 

to AuIn2. How many AuIn2 molecules will be formed per hour, 

3600s? Will it be 3600 or 3600/1.5 = 2400? 3600 appears more 

likely, because the conversion time of .5s occurs while the 

interface is “waiting” for the arrival of the next reactant. The 

Dybkov model, in contrast, would say 2400.  

Millares et al. derive temperature dependent values for K1 and Kp 

                     
1 Millares, M. P., Bernard Lelievre,Elvire (1993). 
"Reaction/diffusion in the Au-In System." Solid State Ionics 63-2 Dybkov, V. I. (1986). "Reaction Diffusion in Heterogeneous 
Binary-Systems .1. Growth of the Chemical-Compound Layers at the 
Interface between 2 Elementary Substances - One Compound Layer." 
Journal of Materials Science 21(9): 3078-3084. 
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from their figures 3 and 4 shown below, but do NOT indicate HOW 

that is done. Those values are shown in Millares’ table 1 below, 

copied from Ref. 1. 

 

     
As the table states, “e” is the thickness of the AuIn2 layer.  

To confirm/check up on the values of Kp and K1 in Millares’ 

table 1, the data in Millares’s figure 3 and 4 were digitized, 

using the software “UnscanIt”3. Below the times t (hour) are 

plotted versus the values of AuIn2 thickness “e” thus derived for 

all temperatures listed in Millares’ table 1, and a function 

    t = (1/m1)*e + (1/m2)*e2 

                     
3 Silk Scientific, Inc.  |  P.O. Box 533  |  Orem, Utah 84059 USA 
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is fitted to the data. In figure 33 to 37, and in the 

accompanying text, “m1” and “m2” stand for Millares’ K1 

and Kp, respectively.  

 
Figure 33. Time vs. gold layer thickness consumed at 50°C, using 

Millares’s data of their figure 3. Here only m1 is used. 

 
Figure 34. Time vs. gold layer thickness consumed at 85°C, using 

Millares’s data of their figure 3. Here only m1 is used. 
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Figure 35. Time vs. gold layer thickness consumed at 100°C, 

using Millares’s figure 4. Here both m1 and m2 are used. 

 
Figure 36. Time vs. gold layer thickness consumed at 125°C, 

using Millares’s figure 4. Here both m1 and m2 are used. 
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Figure 37. Time vs. gold layer thickness consumed at 150°C, 

using Millares’s figure 4.Here both m1 and m2 are used. 
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C IV) Table 1.Comparison of LLNL and Millares fit of K1 and Kp. 

C IV) Table 1 shows that the LLNL fit to Millares’ data is 

close to Millares’ values, except for K1 at 125°C. The LLNL fit 

to the data at 125°C (figure 36) has an “R” value of .997, and a 

Kp value of 12.82, very close to Millares’ 13, hence it is 

difficult to see how Millares’ K1 value .507 (vs. LLNL’s .599) 

was arrived at. 
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Figure 38 shows the activation energy of K1 and Kp derived 

from a plot of K1 and Kp versus inverse temperature in degree 

Kelvin. Both sources of data, as shown in Millare’s table 1, and 

as derived from LLNL fits to Millares’ data (his figure 3 and 4) 

are plotted. Exponential fits to those two data sets show little 

difference, as expected from C IV) table 1 above. Therefore, the 

fit to Millares’ data will be used from now on. 

 
Figure 38. The activation energy of K1 and Kp derived from a 

plot of K1 and Kp versus inverse temperature in degree Kelvin.  

K1 and Kp are plotted both as shown in Millares’ paper and as 

derived from LLNL fits to the data in Millares’s figure 3 and 4. 

Exponential fits to both sources of data are made. 
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To compare Millares’ reaction data with LLNL’s of part A 

for the linear reaction and of part C.III for the non-linear 

reaction, one has to convert Millares’ coefficients “K1” and 

“Kp” to the time and reaction units used in section A, i.e. time 

(month), and gold consumed (µm) rather than AuIn2 layer 

thickness. The ratio of AuIn2 layer thickness formed to gold 

thickness consumed is 4.2, see section A. After this conversion, 

the coefficients will be called “K1AuMonthMillaresData” and 

“KpAuMonthMillaresData”. 

Millares’ equation  is 

               t =  e /K1 + e
2 /Kp,   

It is important to recognize that in Millares’ analysis both the 

interface control (linear with time, K1) and the diffusion 

control (K2) act together at all times. In contrast, in this 

report the reaction is split into two parts: 1) the time period 

when the reaction is linear with time, and 2) the time when the 

reaction proceeds proportional to time. Hence, the coefficient 

derived in part A of this report for the “linear” reaction, and 

in part C.II) for the “nonlinear” reaction are not directly 

comparable to Millares’ K1 and Kp.  

In part A LLNL’s linear reaction is described by 

∆R(gold wire radius loss, µm) = 1.45*10^10*exp(-7990/T{°K})* 

reaction time(month)  

or 

reaction time = 1/[(1.45*10^10*exp(-7990/T{°K})])*(∆Rloss) 

or, in Millares’ terminology 

        time = ∆R/[K1*AuMonthLLNL] 

but stressing again, by use of the “*” symbol, that 

K1*AuMonthLLNL is NOT exactly equivalent in meaning to 

K1AuMonthMillaresData. 
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LLNL’s formula in the “nonlinear regime” (see above) is 

∆R = 1.5049*10^7*exp(-5245.3/T)*√time(month), hence  

time(month) = ∆R2/[1.5049*10^7*exp(-5245.3/T)]2 

or, in Millares’ terminology 

        time = ∆R2/[Kp*AuMonthLLNL] 

The resulting coefficients “K1AuMonthMillares” and 

“KpAuMonthMillares” of Millares, and the coefficients of the 

linear and nonlinear equation of this report, called 

“K1*AuMonthLLNL” and “Kp*AuMonthLLNL” are plotted as an 

Arrhenius plot in figure 39 below as a function of (1/°Kelvin).  

 
Figure 39. Arrhenius plot of K1 and Kp and K1* and Kp*, 

respectively, (µm/month and µm^2/month), and the activation 

energy derived therefrom for LLNL and Millares’ data.  

 

Figure 39 gives these equations for Millares’ K1 and Kp: 

10-1

100

101

102

103

104

105

2.2 10-3 2.4 10-3 2.6 10-3 2.8 10-3 3 10-3 3.2 10-3

Arrhenius Plot of 
 "K1AuMonthMillares" & "KpAuMonthMillares"

and
"K1*AuMonthLLNL"&"Kp*AuMonthLLNL"

KpAuMonthMillaresData
Kp*AuMonthLLNL
K1AuMonthMillaresData
K1*AuMonthLLNL

y = 5.6926e+14 * e^(-10672x)   R= 0.98893 

y = 2.2647e+14 * e^(-10490x)   R= 1 

y = 6.8158e+10 * e^(-8377.6x)   R= 0.84905 

y = 1.45e+10 * e^(-7990x)   R= 1 

C
oe

ffi
ci

en
ts

 K
p,

 !
m
^2

/m
on

th
, O

R
 K

1,
 !

m
/m

on
th

1/Temperature, 1/°K

50 C85 C125 C 100 C150 C



 67 

K1 = 6.8158*10^10*exp(-8377/T(°K)) 

Kp = 5.6926*10^14*exp(-10672/T(°K)) 

While LLNL’s K1* and Kp* are as listed in part A and C.III: 

K1* = 1.45*10^10*exp(-7990/T(°K)) 

Kp* = 2.2647*10^14*exp(-10490/T(°K)) 

 

Both activation energies from LLNL and Millares are close to 

each other, 7990 for K1* vs. 8377 for K1 and 10490 for Kp* vs. 

10672 for Kp, respectively. That is expected, since the 

activation energies of the interfacial and diffusional process 

have to be the same.  But the pre-exponential factors differ 

substantially: 1.45*10^10 for K1* vs. 6.8 for K1 and 2.3 for Kp* 

vs. 5.7 for Kp respectively. K1* and Kp* appear in the 

denominator, and hence must have lower values since each one 

alone, not together as in Millares’ equation, determine the 

reaction. They have different meanings, as pointed out above, 

and can NOT be used in a Millares’ equation together.  

The reaction ∆R values at 20°C have been calculated using the 

equations listed above, for Millares using his equation with K1 

and Kp together, and for LLNL using K1* and Kp* separately. 

The results are plotted in figure 40, together with ∆R values 

measured on gold wires of 1.5 mil and 4 mil diameter stored 

either at Mound Laboratories or at LLNL, respectively. As 

expected from his equation, Millares’ prediction shows a 

continuously decreasing slope that even at 400 month (see figure 

40 a) has not yet decreased to a value of .5, i.e. diffusion 

control; figure 40 b ) extends time to 1200 month.  Millares’ 

prediction stays always below the measured values and LLNL’s 

diffusion controlled equation, but approaches LLNL’s diffusion 

controlled line asymptotically, as expected. LLNL’s “linear 

reaction” equation is close to the measured values below 140 

month, and the “nonlinear reaction” equation is close to the 
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values after ~140 month. Figure 32 showed that the transition 

from interface control to diffusion control occurs at 

approximately 140 month reaction at 20°C. 

 
Figure 40 a. Gold wire radius decrease ∆r, µm, as a function of 

time ( up to 400 month) at a reaction temperature of 20°C as 

predicted by Millares or LLNL, and as measured after storage at 

Mound or LLNL at ~20°C. 
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Figure 40 b. Gold wire radius decrease ∆r, µm, as a function of 

time (up to 1200 month) at a reaction temperature of 20°C as 

predicted by Millares or LLNL, and as measured after storage at 

Mound or LLNL at ~20°C. Millares’ equation approach LLNL’s 

Nonlinear (diffusion control) equation asymptotically, as 

expected. 

C V.) Summary 

We have developed a model for the diffusion controlled reaction, and defined 

the regime where it applies. It is based on very few data, and hence possibly 

subject to revision as new data are generated. It predicts a slower rate of 

gold conversion than the “conservative” interface controlled model. We have 

shown that the linear model of part A and the nonlinear model of part C, 

section III, agree with measurements of gold wire radius decrease ∆R held at 

20°C for up to 340 month.  
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Having defined the regimes where the interface controlled model applies, and 

where the diffusion controlled model supersedes it, we derived the set of 

equations of a comprehensive reaction model that applies for all temperatures 

and times and agrees with ∆R measurements at 20°C over extended time.   

We compare this model with the model published by Millares et al. and find 

that our reaction equations provide in cylindrical geometry a better fit in 

the diffusion controlled regime. 

 


